Section 8.4

last few pages of the section

Section 8.4 (last pages)
Bubfactors - factorgrous of subgroups subgroups of factor groups
G - a group N - a normal subgroup of G

- salve thing

Th 8.21 $N \subset K \subset G$
$K / N C G / N$ - subgroup
Pf N is normal in G means
$a N=N a$ for every $a \in G$
Therefore $a N=N$ for every $a \in K$
Thus N is normal in K and
K / N makes sense, is a group

$$
k / N=h N a \mid a \in K\}
$$

is a subset of

$$
G / H=h N a \mid a \in G\}
$$

Th 8,24 Jor every subgroup $T C G / N$, there exists H, a subgroup of G sot. $N \subset H \subset G$ and $T \simeq H / N$
Pf $H=H a \in G \backslash N a \in T Y$
H is a subgroup in G - Ewer $23 p 271$
$a, b \in H$ check: $a b \in H V$
$N a \in T, N b \in T$ then $(N a)(N b)=N(a b) \in T$ implies $a b \in T$
$a \in H$ check. $a^{-1} \in H V$
$N a \in T$ thus $(N a)^{-1} \in T,(N a)^{-1}=N a^{-1} \in T$
$H \supset N$ If $a \in N$, then $N a=N$ is the identity in T

$$
\begin{aligned}
H / N=h a \in G \backslash N a \in T y / N & =\left\langle N_{a}\right| N a \in T Y \\
& \equiv h N a \in T Y=T
\end{aligned}
$$

Th 8.22
Let the intermediate subgroup K

$$
N \subset K \subset G
$$

be normal in G.
Then $k / N \subset G / N$ is a normal subgroup and

$$
\begin{array}{r}
(G / N) /(K / N) \simeq G / K \text { - the } 3^{\frac{d}{i s o m o r p h i s m ~}} \\
\text { theorem }
\end{array}
$$

Def A group G is called simple if the only normal subgroups it has are trivial: $\langle e\rangle, G$

Prop $\operatorname{Let} G$ be a finite group.
Let G be a normal subgroup of the largest order possible. $G \neq G$
Then G / G_{1} is simple.

Pf. Assume, for a contradiction. that $G / G_{1} \supset M$, a normal subgroup

If there are several of the same order, G, may be any one of them.

$$
G_{1} \subset T \subset G \quad T / G_{1} \simeq M
$$

T is normal in G and larger than G_{1}, which is a contradiction.
Procedure
Starting worth $G=G_{0}$, a finite group, we construct G_{1}, after that $G_{2} \ldots$

$$
G_{0} \not G_{1} \not G_{2} \ngtr \ldots \nexists\langle e\rangle
$$

All factors G_{i-1} / G_{i} are simple groups - composition factors for the group G
Th (Jordan-Hölder)
A group completely determines its composition factors.
Specifically, if one has a series $G_{0} \supsetneq G_{1} \nsupseteq G_{\alpha} \nsupseteq \ldots \quad \ddagger$ <es such that all quotients G_{i-1} / G_{i} are simple, the set of these simple quotients is determined uniquely, independently on how the series is constructed. This set depends on the initial finite group only.
Classification of simple groups is mostly done by 1980, presumably last gaps in the proof (and results) were fixed ~ 2004.

There are 18 infinite families of simple groups
26 sporadic simple groups

A very elementary one (out of 18): The group \mathbb{Z}_{p} (cyclic ant of p elements) is simple for any prime p.

