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Subfactors - factor graces of subgroups Bk subgroups of factor groups
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Th 2.22 Cos 8.23

Let the intermediate subgroup K
H c K C G

N C K C G

be normal in G
.

K is normal in G iff
k£1 is normal in %Then Khe C %

is a normal subgroup and

(94K¥) x % -
the 3d isomorphism

theorem

-

Def A group G is called simple if the only normal subgroups it has
-

are trivial : Le >
,
G

P.ro#2etG be a finite group .

Let G
,
be a normal subgroup of the largest order possible .
E

Gt G If these are several of

Then %
,
is simple .

the same order, G, may be

-

any one of them.

Pf, Assume
, for a contradiction,

that %
,

> µ
,
a normal subgroup



G
, C T C G TIG

,
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T is normal in G and larger than G. , which is a contradiction .

Procedure
starting with G e- Go

,
a finite group , we

construct Gi
,

after that Ga . . .

G Z Gi F Ga Z . . . . Z se >

All falters Gi-yes
,

are simple groups - composition factors
for the group G

Th (Jordan - Holder )
A group completely determines its composition

factors
.

Specifically , if one has a series G
. Z G, Z Ga Z . . . 7 Les

such that all quotients Gi
-ye

,
are simple,

the set of these sample quotients is determined uniquely,
independently on how the series is constructed.
This set depends on the initial finite group only .

Classification of simple groups is mostly done by 1980 ,
presumably last gaps in the proof (and results) were fixed n

2009 .



There are 18 infinite families of simple groups
26 sporadic simple groups

A very elementary one (out of 18) : The group Ep ( eye
lie out of p

elements ) is simple for any
prime p .


